

Reactor Design II

Week 3 Multiple Reactions

Saba A. Gheni, Ph.D.

Chemical Engineering Department

ghenis@tu.edu.iq

كلبة الهندسة - COLLEGE OF ENGINEERING

Introduction

- Chemical Reaction Engineering (CRE) examines the dynamics of reaction rates, mechanisms, and reactor design.
- This lecture focuses on multiple reactions, their classification, and strategies to optimize selectivity and yield.

كلية الصندسة - COLLEGE OF ENGINEERING

Topics to be Addressed

- - Fundamentals of Multiple Reactions
- Types of Reactions: Series, Parallel, Independent, and Complex
- - Selectivity and Yield: Instantaneous vs. Overall
- - Analytical and Numerical Approaches
- - Case Studies and Practical Applications

كلية الصندسة - COLLEGE OF ENGINEERING

Objectives

- By the end of this lecture, students will be able to:
- - Classify multiple reaction types and their characteristics.
- - Apply mole balances, rate laws, and stoichiometry to multiple reactions.
- - Analyze selectivity and yield in reaction networks.
- Develop strategies to maximize desired products in complex reactions.

كلية الهندسة - COLLEGE OF ENGINEERING

Introduction

- Multiple reactions, including series, parallel, independent, and complex types, play a critical role in chemical process optimization.
- This session explores theoretical insights and practical approaches to analyze and maximize the desired products.

كلبة الصندسة - COLLEGE OF ENGINEERING

- Multiple Reactions
 - Selectivity and Yield
 - Series Reactions
 - Complex Reactions

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

Types of Multiple Reactions

- Series: $A \rightarrow B \rightarrow C$
- Parallel: $A \rightarrow D$

 $\mathsf{A} \rightarrow \mathsf{U}$

• Independent: $A \rightarrow B$

 $C \rightarrow D$

• Complex: $A + B \rightarrow C + D$

 $A + C \rightarrow E$

With multiple reactors, either molar flow or number of moles must be used (no conversion!)

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University - جامعة تكريت

Selectivity and Yield

There are two types of selectivity and yield: Instantaneous and Overall.

	Instantaneous	Overall
Selectivity	$S_{DU} = \frac{r_D}{r_U}$	$\widetilde{S}_{DU} = \frac{F_D}{F_U}$
Yield	$Y_D = \frac{r_D}{-r_A}$	$\widetilde{Y}_D = \frac{F_D}{F_{A0} - F_A}$

كلية الهندسة - COLLEGE OF ENGINEERING

Selectivity and Yield

Example: $A + B \xrightarrow{k_1} D$ Desired Product: r_1 $A + B \xrightarrow{k_2} U$ Undesired Product: r_1

$$S_{D/U} = \frac{r_D}{r_U} = \frac{k_1 C_A^2 C_B}{k_2 C_A C_B} = \frac{k_1}{k_2} C_A$$

 $r_D = k_1 C_A^2 C_B$ $r_U = k_2 C_A C_B$

To maximize the selectivity of D with respect to U run at high concentration of A and use PFR.

كلية الهندسة - COLLEGE OF ENGINEERING جامعة تكريت - Tikrit University

Gas Phase: Multiple Reactions

Following the Algorithm

Number all reactions

Mole balances:

Mole balance on each and every species

PFR

CSTR

Batch

Rates:

Laws

 $\frac{dN_j}{dt} = r_j V$

 $\frac{dF_j}{dV} = r_j$

 $F_{i0} - F_i = -r_i V$

Membrane ("i" diffuses in)

Liquid-semibatch

 $\frac{dF_i}{dV} = r_i + R_i$

 $\frac{dC_j}{dt} = r_j + \frac{v_0(C_{j0} - C_j)}{V}$

$$r_{ij} = k_{ij} f_i(C_j, C_n)$$

 $\frac{r_{i\mathrm{A}}}{-a_i} = \frac{r_{i\mathrm{B}}}{-b_i} = \frac{r_{i\mathrm{C}}}{c_i} = \frac{r_{i\mathrm{D}}}{d_i}$

 $r_j = \sum_{j=1}^{q} r_{ij}$

Net rates

Stoichiometry:

Relative rates

Gas phase

 $C_j = C_{T0} \frac{F_j}{F_T} \frac{P}{P_0} \frac{T_0}{T} = C_{T0} \frac{F_j}{F_T} \frac{T_0}{T} y$ $p = \frac{P}{P_{p_1}}$ $F_T = \sum_{j=1}^{n} F_j$

 $\frac{dp}{dW} = -\frac{\alpha}{2p} \left(\frac{F_T}{F_{T0}}\right) \frac{T}{T_0}$

 $v = v_0$

Liquid phase

 C_A, C_B, \ldots

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Combine: Polymath will combine all the equations for you. Thank you,

Multiple Reactions

A) Mole Balance of each and every species

Flow Batch

كلية الصندسة - COLLEGE OF ENGINEERING

Multiple Reactions

B) Rates

a) Rate Law for each reaction: $-r_{1A} = k_{1A}C_AC_B$ $-r_{2A} = k_{2A}C_CC_A$

b) Net Rates:

$$r_{A} = \sum_{i=1}^{N} r_{iA} = r_{1A} + r_{2A}$$
$$\frac{r_{iA}}{-a_{i}} = \frac{r_{iB}}{-b_{i}} = \frac{r_{iC}}{c_{i}} = \frac{r_{iD}}{d_{i}}$$

c) Relative Rates:

كلية الصندسة - COLLEGE OF ENGINEERING

Multiple Reactions

C) Stoichiometry $C_A = C_{T0} \frac{F_A}{F_{A0}} \left(\frac{P}{P_0}\right) \left(\frac{T_0}{T}\right)$ **Gas:**

 $C_A = F_A / \upsilon_0$

Liquid:

- Example: $A \rightarrow B \rightarrow C$
 - $(1) A \rightarrow B \quad k_1$

 $(2) B \rightarrow C k_2$ **COLLEGE OF ENGINEERING** - كلبة الهندسة Tikrit University جامعة تكريت - Tikrit University

Batch Series Reactions

1) Mole Balances

$$\frac{dN_{A}}{dt} = r_{A}V$$

$$\frac{dN_{B}}{dt} = r_{B}V$$

$$\frac{dN_{C}}{dt} = r_{C}V$$

$$V=V_{0} \text{ (constant batch)}$$

$$\frac{dC_{A}}{dt} = r_{A} \quad \frac{dC_{B}}{dt} = r_{A} \quad \frac{dC_{C}}{dt} = r_{A}$$
COLLEGE OF ENGINEERING - i A substitution of the second sec

Batch Series Reactions

2) Rate Laws

Example 1: Batch Series Reactions

طريقك إلى اندباح YOUR WAY TO SUCCESS

Example: Batch Series Reactions

2) Rate Laws

Laws:
$$r_{1A} = -k_1 C_A$$

 $r_{2B} = -k_2 C_B$
Relative: $\frac{r_{1A}}{-1} = \frac{r_{1B}}{1}$ $\frac{r_{2B}}{-1} = \frac{r_{2C}}{1}$

كلبة المندسة - COLLEGE OF ENGINEERING

Example: Batch Series Reactions

3) Combine

Species A:

Species B:

 $-\frac{\mathrm{d}\mathrm{C}_{\mathrm{A}}}{\mathrm{d}\mathrm{t}} = -\mathrm{r}_{\mathrm{A}} = \mathrm{k}_{1}\mathrm{C}_{\mathrm{A}}$ $C_{\Delta} = C_{\Delta 0} \exp(-k_1 t)$ $\frac{\mathrm{dC}_{\mathrm{B}}}{\mathrm{dt}} = \mathrm{r}_{\mathrm{B}}$ $r_{\rm B} = r_{\rm B \, NET} = r_{\rm 1B} + r_{\rm 2B} = k_1 C_{\rm A} - k_2 C_{\rm B}$ $\frac{\mathrm{d}\mathbf{C}_{\mathrm{B}}}{\mathrm{d}t} + k_{2}\mathbf{C}_{\mathrm{B}} = k_{1}\mathbf{C}_{\mathrm{A0}}\exp(-k_{1}t)$ كلية الهندسة - COLLEGE OF ENGINEERING جامعة تكريت - Tikrit University

Example 1: Batch Series Reactions

طريقك إلى انخجاح YOUR WAY TO SUCCESS

Using the integrating factor, $I.F. = \exp(\int k_2 dt) = \exp(k_2 t)$

$$d \frac{[C_B \exp(k_2 t)]}{dt} = k_1 C_{A0} \exp(k_2 - k_1)t$$

at t = 0, C_B=0

$$C_{B} = \frac{k_{1}C_{A0}}{k_{2} - k_{1}} \Big[\exp(-k_{1}t) - \exp(-k_{2}t) \Big]$$

$$C_{C} = C_{A0} - C_{A} - C_{B}$$

$$C_{C} = \frac{C_{A0}}{k_{2} - k_{1}} \Big[k_{2} \Big(1 - e^{-k_{1}t} \Big) - k_{1} \Big(1 - e^{-k_{2}t} \Big) \Big]$$
COLLEGE OF ENGINEERING - Similarity limits

$A \rightarrow B \rightarrow C$

What is the optimal τ ? 1) Mole Balances

A:

$$F_{A0} - F_A + r_A V = 0$$

$$C_{A0} v_0 - C_A v_0 + r_A V = 0$$

$$C_{A0} - C_A + r_A \tau = 0$$

B:

$$0 - v_0 C_B + r_B V = 0$$
$$- C_B + r_B \tau = 0$$

كلبة الهندسة - COLLEGE OF ENGINEERING

$A \rightarrow B \rightarrow C$

2) Rate Laws

Laws: $\mathbf{r}_{1A} = -\mathbf{k}_1 \mathbf{C}_A$ $r_{2R} = -k_2 C_R$ Relative: $\frac{r_{1A}}{-1} = \frac{r_{1B}}{1}$ $\frac{r_{2B}}{-1} = \frac{r_{2C}}{1}$ $r_{A} = r_{1A} + 0 = -k_{1}C_{A}$ Net: $r_{R} = -r_{1A} + r_{2R} = k_{1}C_{A} - k_{2}C_{R}$ كلبة الهندسة - COLLEGE OF ENGINEERING جامعة تكريت - Tikrit University

21

 $A \rightarrow B \rightarrow C$ 3) Combine

$$\begin{split} &C_{A0} - C_A - k_1 C_A t = 0 \\ &C_A = \frac{C_{A0}}{1 + k_1 t} \\ &- C_B + \left(k_1 C_A - k_2 C_B\right) t = 0 \\ &C_B = \frac{k_1 C_A t}{1 + k_2 t} \\ &C_B = \frac{k_1 C_A t}{(1 + k_2 t)(1 + k_1 t)} \end{split}$$

كلية المندسة - COLLEGE OF ENGINEERING

$A \rightarrow B \rightarrow C$

 $d\tau$

Find $\, au \,$ that gives maximum concentration of B

$$C_B = \frac{k_1 C_{A0} \tau}{(1 + k_2 \tau)(1 + k_1 \tau)}$$
$$\frac{dC_B}{dt_1} = 0 \qquad \qquad \tau_{\text{max}} = \frac{1}{\sqrt{k_1 k_2}}$$

كلية الهندسة - COLLEGE OF ENGINEERING

Number all reactions

Mole balances:

Mole balance on each and every species

PFR

CSTR

Batch

Rates:

Laws

Membrane ("i" diffuses in)

Liquid-semibatch

 $\frac{dF_i}{dV} = r_i + R_i$

 $\frac{dF_j}{dV} = r_j$

 $F_{i0} - F_i = -r_i V$

 $\frac{dN_j}{dt} = r_j V$

 $\frac{dC_j}{dt} = r_j + \frac{v_0(C_{j0} - C_j)}{V}$

 $r_{ii} = k_{ii}f_i(C_i, C_n)$

$\frac{r_{iA}}{=}$	$\frac{r_{iB}}{=}$	$\frac{r_{iC}}{=}$	r_{iD}
$-a_i$	$-b_i$	C_i	d_i

 $r_j = \sum_{ij}^{q} r_{ij}$

Net rates

Relative rates

Stoichiometry:

Gas phase

 $C_{j} = C_{T0} \frac{F_{j}}{F_{T}} \frac{P}{P_{0}} \frac{T_{0}}{T} = C_{T0} \frac{F_{j}}{F_{T}} \frac{T_{0}}{T} y$

 $p = \frac{P}{P_0}$

 $F_T = \sum_{j=1}^{n} F_j$

Liquid phase

Combine:

Polymath will combine all the equations for you. Thank you,

طريفاک (ای) (نفجاح NOUR WAY TO SUCCESS

Following the Algorithm

COLLEGE OF ENGINEERIN

ے - Tikrit University

24

Are you ready?

كلبة الهندسة - COLLEGE OF ENGINEERING

Supplementary Slides

كلية الصندسة - COLLEGE OF ENGINEERING

Blood Coagulation

COLLEGE

Ti

$$TF + VII \bigoplus_{k_{2}}^{k_{3}} TF = VII$$

$$TF + VIIa \bigoplus_{k_{4}}^{k_{3}} TF = VIIa$$

$$TF = VIIa + VII \bigoplus_{k_{4}}^{k_{5}} TF = VIIa + VIIa$$

$$TF = VIIa + VII \bigoplus_{k_{6}}^{k_{7}} TF = VIIa + VIIa$$

$$IIa + VII \longrightarrow_{k_{7}}^{k_{7}} IIa + VIIa$$

$$TF = VIIa + X \bigoplus_{k_{9}}^{k_{7}} TF = VIIa = X \longrightarrow_{TF}^{k_{10}} TF = VIIa = Xa$$

$$TF = VIIa + Xa \bigoplus_{k_{14}}^{k_{11}} TF = VIIa = IX \longrightarrow_{TF}^{k_{15}} TF = VIIa + IXa$$

$$Xa + II \longrightarrow_{k_{14}}^{k_{16}} IXa = VIIIa$$

$$IIa + VIIIa + IXa \bigoplus_{k_{19}}^{k_{19}} IXa = VIIIa$$

$$IXa = VIIIa + X \bigoplus_{k_{21}}^{k_{20}} IXa = VIIIa = X \longrightarrow_{LXa}^{k_{22}} IXa = VIIIa + Xa$$

2,

$$\begin{aligned} Ha + V & \bigoplus_{k_{27}}^{k_{26}} Ha + Va \\ Xa + Va & \bigoplus_{k_{27}}^{k_{27}} Xa = Va \\ Xa = Va + H & \bigoplus_{k_{30}}^{k_{29}} Xa = Va = H & \longrightarrow Xa = Va + mHa \\ mHa + Xa = Va & \longrightarrow Xa = Va + Ha \\ Xa + TPFI & \bigoplus_{k_{34}}^{k_{33}} Xa = TFPI \\ TF = VHa = Xa + TFPI & \bigoplus_{k_{36}}^{n_{35}} TF = VHa = Xa = TFPI \\ TF = VHa + Xa = TFPI & \longrightarrow TF = VHa = Xa = TFPI \\ Xa + ATHI & \longrightarrow TF = VHa = Xa = TFPI \\ Xa + ATHI & \longrightarrow mHa = ATHI \\ mHa + ATHI & \longrightarrow MHa = ATHI \\ Ha + ATHI & \longrightarrow Ha = ATHI \\ Ha + ATHI & \longrightarrow Ha = ATHI \end{aligned}$$

 $TF = VIIa + ATIII \xrightarrow{k_{42}} TF = VIIa = ATIII$

Courtesy of Hockin, M.F., Jones, K.C., Everse, S.J. and Mann, K.G. (2002). A model for the stoichiometric regulation of blood coagulation. *The Journal of Biological* **Tikrit l** *Chemistry* 277 (21), 18322-18333.

Notations

Species symbol	Nomenclature
TF	Tissue factor
VII	proconvertin
TF=VIIa	factor TF=VIIa
VIIa	factor novoseven
TF=VIIa	factor TF=VIIa complex
Xa	Stuart prower factor activated
IIa	thrombin
Х	Stuart Prower factor
TF=VIIa=X	TF=VIIa=X complex
TF=VIIa=X	TF=VIIa=X complex
IX	Plasma Thromboplastin Component
TF=VIIa=IX	TF=VIIa=IX complex
IXa	factor IXa
II	prothrombin
VIII	antihemophilic factor
VIIIa	antihemophilic factor activated
IXa=VIIIa	IXa=VIIIa complex
IXa=VIIIa=X	IXa=VIIIa=X complex

COLLEGE OF EI

Tikrit U

29

Notations

طريقك إلى انجاح

VIIIa ₁ L	factor VIIIa ₁ L	
VIIIa ₂	factor VIIIa ₂	
V	proaccelerin	
Va	factor Va	
Xa=Va	Xa=Va complex	
Xa=Va=II	Xa=Va=II complex	
mIIa	meizothrombin	
TFPI	tissue factor pathway inhibitor	
Xa=TFPI	Xa=TFPI complex	
TF=VIIa=Xa=TFPI	TF=VIIa=Xa=TFPI complex	
ATIII	antithrombin	
Xa=ATIII	Xa=ATIII complex	
mIIa=ATIII	mIIa=ATIII complex	
IXa=ATIII	IXa=ATIII complex	
TF=VIIIa=ATIII	TF=VIIIa=ATIII complex	
IIa=ATIII	IIa=ATIII complex	

COLLEGE OI

جامعه تخریت - Tikriı university

Mole Balances

$$\begin{aligned} \frac{dC_{TT}}{dT} &= k_2 \cdot C_{TTVIII} - k_1 \cdot C_{TT} \cdot C_{VIII} - k_3 \cdot C_{TT} \cdot C_{VIII} + k_4 \cdot C_{TTVIIIa} \\ \frac{dC_{VII}}{dt} &= k_2 \cdot C_{TTVIII} - k_1 \cdot C_{TT} \cdot C_{VIII} - k_6 \cdot C_{Xa} \cdot C_{VIII} - k_7 \cdot C_{IIa} \cdot C_{VIII} - k_5 \cdot C_{TTVIIIa} \cdot C_{VII} \\ \frac{dC_{TTVII}}{dt} &= -k_2 \cdot C_{TTVIII} + k_1 \cdot C_{TT} \cdot C_{VII} \\ \frac{dC_{TTVII}}{dt} &= k_4 \cdot C_{TTVIIIa} - k_3 \cdot C_{TT} \cdot C_{VIIa} + k_5 \cdot C_{TTVIIa} \cdot C_{VII} + k_6 \cdot C_{Xa} \cdot C_{VIII} + k_7 \cdot C_{IIa} \cdot C_{VII} \\ \frac{dC_{TTVII}}{dt} &= -k_4 \cdot C_{TTVIIIa} + k_3 \cdot C_{TT} \cdot C_{VIIa} + k_9 \cdot C_{TTVIIIaX} - k_8 \cdot C_{TTVIIIa} \cdot C_X - k_{11} \cdot C_{TTVIIIa} \cdot C_{Xa} + \\ k_{12} \cdot C_{TTVIIIa} - k_{13} \cdot C_{TTVIIIa} \cdot C_{IX} + k_{14} \cdot C_{TTVIIIaX} + k_{15} \cdot C_{TTVIIIaX} - k_{37} \cdot C_{TTVIIIa} \cdot C_{Xa} + \\ k_{12} \cdot C_{TTVIIIa} \cdot C_{ATIII} \\ \frac{dC_{Xa}}{dt} &= k_{11} \cdot C_{TTVIIa} \cdot C_{Xa} + k_{12} \cdot C_{TTVIIIaXa} + k_{22} \cdot C_{IXaVIIIaX} + k_{28} \cdot C_{XaVa} - k_{27} \cdot C_{Xa} \cdot C_{Va} + \\ k_{34} \cdot C_{XaTFPI} - k_{33} \cdot C_{Xa} \cdot C_{TFPI} - k_{38} \cdot C_{XaVa} - k_{41} \cdot C_{III} \\ \frac{dC_{IIa}}{dt} &= k_{16} \cdot C_{Xa} \cdot C_{III} + k_{32} \cdot C_{mIIa} - k_{30} \cdot C_{XaVa} - k_{21} \cdot C_{IXaVIIIaX} + k_{25} \cdot C_{IXaVIIIaX} \\ \frac{dC_{IIa}}{dt} &= -k_8 \cdot C_{TTVIIIa} \cdot C_X + k_9 \cdot C_{TTVIIIaX} - k_{20} \cdot C_{IXaVIIIa} \cdot C_X + k_{21} \cdot C_{IXaVIIIaX} + k_{25} \cdot C_{IXaVIIIaX} \\ \frac{dC_{IIa}}{dt} &= -k_8 \cdot C_{TTVIIIa} \cdot C_X - k_9 \cdot C_{TTVIIIaX} - k_{10} \cdot C_{TTVIIIaX} \\ \frac{dC_{TTVIIIA}}{dt} &= k_8 \cdot C_{TTVIIIa} \cdot C_X - k_9 \cdot C_{TTVIIIAX} - k_{10} \cdot C_{TTVIIIAX} \\ \\ \end{array}$$

Solution
Solution

$$\frac{dC_{TPTMaxa}}{dt} = k_{10} \cdot C_{TPTMax} + k_{11} \cdot C_{TPTMa} \cdot C_{xa} - k_{12} \cdot C_{TPTMaxa} + k_{36} \cdot C_{TPTMaxaTPT} - k_{35} \cdot C_{TPTMaxa} C_{TPT}$$

$$\frac{dC_{tt}}{dt} = k_{14} \cdot C_{TPTMax} - k_{13} \cdot C_{TPTMa} \cdot C_{x}$$

$$\frac{dC_{tt}}{dt} = k_{14} \cdot C_{TPTMax} - k_{13} \cdot C_{TPTMa} \cdot C_{x}$$

$$\frac{dC_{tt}}{dt} = k_{13} \cdot C_{TPTMax} - k_{13} \cdot C_{TPTMa} \cdot C_{x}$$

$$\frac{dC_{tt}}{dt} = k_{13} \cdot C_{TPTMax} - k_{13} \cdot C_{TPTMax} - k_{15} \cdot C_{TPTMax}$$

$$\frac{dC_{tt}}{dt} = k_{15} \cdot C_{TPTMax} - k_{13} \cdot C_{TPTMax} - k_{15} \cdot C_{TPTMax}$$

$$\frac{dC_{tt}}{dt} = -k_{16} \cdot C_{x5} \cdot C_{tt} + k_{30} \cdot C_{x0} - k_{15} \cdot C_{TPTMax}$$

$$\frac{dC_{tt}}{dt} = -k_{16} \cdot C_{x5} \cdot C_{tt} + k_{30} \cdot C_{x0} - k_{19} \cdot C_{ttot} - k_{25} \cdot C_{ttot} - k_{24} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{17} \cdot C_{ttot} - k_{18} \cdot C_{ttot} + k_{19} \cdot C_{ttot} - k_{25} \cdot C_{ttot} - k_{24} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{17} \cdot C_{ttot} - k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot} - k_{25} \cdot C_{ttot} - k_{25} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot} - k_{25} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{19} \cdot C_{ttot} - k_{19} \cdot C_{ttot}$$

$$\frac{dC_{ttot}}{dt} = k_{10} \cdot C_$$

العد من العد من المالية المد من المالية

Mole Balances

$$\begin{aligned} \frac{dC_{Y}}{dt} &= -k_{25} \cdot C_{Ha} \cdot C_{Y} \\ \frac{dC_{Ya}}{dt} &= k_{26} \cdot C_{Ha} \cdot C_{Y} + k_{25} \cdot C_{Xa} \cdot C_{Ya} - k_{27} \cdot C_{Xa} \cdot C_{Ya} \\ \frac{dC_{Ya}}{dt} &= k_{26} \cdot C_{Ha} \cdot C_{Y} + k_{27} \cdot C_{Xa} \cdot C_{Ya} - k_{29} \cdot C_{HaFa} \cdot C_{H} + k_{30} \cdot C_{XaFaH} + k_{31} \cdot C_{XaFaH} \\ \frac{dC_{XaFaH}}{dt} &= k_{29} \cdot C_{HaFa} \cdot C_{H} - k_{30} \cdot C_{XaFaH} - k_{31} \cdot C_{XaFaH} \\ \frac{dC_{saHa}}{dt} &= k_{29} \cdot C_{HaFa} \cdot C_{H} - k_{32} \cdot C_{mHa} \cdot C_{XaFaH} - k_{31} \cdot C_{XaFaH} \\ \frac{dC_{saHa}}{dt} &= k_{31} \cdot C_{XaFaH} - k_{32} \cdot C_{mHa} \cdot C_{XaFa} - k_{39} \cdot C_{mHa} \cdot C_{ATHH} \\ \frac{dC_{refH}}{dt} &= k_{34} \cdot C_{XaTFFH} - k_{35} \cdot C_{TFFH} + k_{36} \cdot C_{TFFHAXATFFH} - k_{35} \cdot C_{TFFHAX} \cdot C_{TFFH} \\ \frac{dC_{refH}}{dt} &= -k_{34} \cdot C_{XaTFFH} + k_{37} \cdot C_{Xa} \cdot C_{TFFH} - k_{57} \cdot C_{TFFHa} \cdot C_{XaTFFH} \\ \frac{dC_{aTHH}}{dt} &= -k_{36} \cdot C_{TFFHAXATFFH} + k_{35} \cdot C_{TFFHAX} \cdot C_{TFFH} + k_{57} \cdot C_{TFFHa} \cdot C_{XaTFFH} \\ \frac{dC_{aTHH}}{dt} &= -k_{36} \cdot C_{TFFHAXATFFH} + k_{35} \cdot C_{TFFHAX} \cdot C_{ATHH} - k_{41} \cdot C_{Ha} \cdot C_{ATHH} - k_{40} \cdot C_{LXa} \cdot C_{ATHH} - k_{41} \cdot C_{Ha} \cdot C_{ATHH} - k_{40} \cdot C_{LXa} \cdot C_{LXA$$

Figure D. Total thrombin as a function of time with an initiating TF concentration of 25 pM (after running Polymath) for the abbreviated blood clotting cascade.

Figure E. Total thrombin as a function of time with an initiating TF concentration of 25 p*M*. [Figure courtesy of M. F. Hockin et al., "A Model for the Stoichiometric Regulation of Blood Coagulation," *The Journal of Biological Chemistry*, 277[21], pp. 18322–18333 (2002)]. Full blood clotting cascade.

Blood Coagulation

Many metabolic reactions involve a large number of sequential reactions, such as those that occur in the coagulation of blood.

 $Cut \rightarrow Blood \rightarrow Clotting$

Figure A. Normal Clot Coagulation of blood (picture courtesy of: Mebs, Venomous and Poisonous Animals, Medpharm, Stugart 2002, Page 305) Tikrit University - جامعة تكريت - Tikrit University

Schematic of Blood Coagulation

Subendothelial tissue

Figure B. Schematic of separation of TF (A) and plasma (B) before cut occurs.

Figure C. Cut allows contact of plasma to initiate coagulation. (A + B \rightarrow Cascade)

Summary

- In this lecture, we covered:
- - Classification and characteristics of multiple reactions.
- Key concepts: selectivity, yield, mole balances, and stoichiometry.
- Practical strategies to maximize selectivity and desired outcomes.
- - Analytical and numerical methods for reactor performance evaluation.
- Multiple reactions are essential for understanding and optimizing complex chemical processes.

كلية الصندسة - COLLEGE OF ENGINEERING